

Level 0

we send info in the body base of the info we get the data or cretate the data

LEVEL 1

LEVEL 2

LEvel 3

Rest is defined by 6 constrains

Uniform interface (key constrained)

This constraint has 4 parts:

1. The request to the server has to include a resource identifier

2. The response the server returns include enough information so

the client can modify the resource

3. Each request to the API contains all the information the server

needs to perform the request, and each response the server

returns contain all the information the client needs in order to

understand the response.

4. Hypermedia as the engine of application state — this may

sound a bit cryptic, so let’s break it down: by application we

mean the web application that the server is running. By

hypermedia we refer to the hyperlinks, or simply links, that the

server can include in the response. The whole sentence means

that the server can inform the client , in a response, of the ways

to change the state of the web application. If the client asked

for a specific user, the server can provide not only the state of

that user but also information about how to change the state of

the user, for example how to update the user’s name or how to

delete the user. It is easy to think about the way it’s done by

thinking about a server returning a response in HTML format

to a browser (which is the client). The HTML will include tags

with links (this is the hypermedia part) to another web page

where the user can be updated (for example a link to a ‘profile

settings’ page). To put all of this in perspective, most

web pages do implement hypermedia as the engine of

application state, but the most common web APIs do not

adhere to this constraint. To further understand this concept, I

highly recommend watching this 30 minutes YouTube video.

The result of the uniform interface is that requests from different

clients look the same, whether the client is a chrome browser, a

linux server, a python script, an android app or anything else.

https://www.youtube.com/watch?v=6UXc71O7htc

Client — server separation

The client and the server act independently, each on its own, and

the interaction between them is only in the form of requests,

initiated by the client only, and responses, which the server send

to the client only as a reaction to a request. The server just sits

there waiting for requests from the client to come. The server

doesn’t start sending away information about the state of some

resources on its own.

Stateless

Stateless means the server does not remember anything about the

user who uses the API. It doesn’t remember if the user of the API

already sent a GET request for the same resource in the past, it

doesn’t remember which resources the user of the API requested

before, and so on.Each individual request contains all the

information the server needs to perform the request and return a

response, regardless of other requests made by the same API user.

Cacheable

This means that the data the server sends contain information

about whether or not the data is cacheable. If the data is

cacheable, it might contain some sort of a version number. The

version number is what makes caching possible: since the client

knows which version of the data it already has (from a previous

response), the client can avoid requesting the same data again and

again. The client should also know if the current version of the

data is expired, in which case the client will know it should send

another request to the server to get the most updated data about

the state of a resource.

Layered system

Between the client who requests a representation of a resource’s

state, and the server who sends the response back, there might be

a number of servers in the middle. These servers might provide a

security layer, a caching layer, a load-balancing layer, or other

functionality. Those layers should not affect the request or the

response. The client is agnostic as to how many layers, if any, there

are between the client and the actual server responding to the

request.

Code-on-demand

This constraint is optional — an API can be RESTful even without

providing code on demand.

The client can request code from the server, and then the response

from the server will contain some code, usually in the form of a

script, when the response is in HTML format. The client then can

execute that code.

	Uniform interface (key constrained)
	Client — server separation
	Stateless
	Cacheable
	Layered system
	/
	Code-on-demand

