Level O

we send info in the body base of the info we get the data or cretate the data

Level O (The Swamp of POX)

HTTP protocol is used for remote
interaction

... the rest of the protocol isn’t used as it
should be

ta __ _er-eaii;;e:;)j

POS
ht lyapl

LEVEL1

Level 1 (Resources)

Each resource is mapped to a URI

HTTP methods aren’t used as they
should be

LEVEL 2

Level 2 (Verbs)

Correct HTTP verbs are used

Correct status codes are used

LEvel 3

201 Created (author) -

zee'ﬂkm(ﬁufhors).

POST (author representatlonl
'ho authot

Level 3 (Hypermedia)

The API supports Hypermedia as the
Engine of Application State (HATEOQAS)

Introduces discoverability

?299 Ok:(authors.+'links that
drive application state)

Rest is defined by 6 constrains

Uniform

Interface Statelessness

Client-Server

Code on Demand

Layered System Cacheable (optional)

Uniform interface (key constrained)

This constraint has 4 parts:

1. The request to the server has to include a resource identifier

2. The response the server returns include enough information so
the client can modify the resource

3. Each request to the API contains all the information the server
needs to perform the request, and each response the server
returns contain all the information the client needs in order to
understand the response.

4. Hypermedia as the engine of application state — this may
sound a bit cryptic, so let’s break it down: by application we
mean the web application that the server is running. By
hypermedia we refer to the hyperlinks, or simply links, that the

server can include in the response. The whole sentence means
that the server can inform the client , in a response, of the ways
to change the state of the web application. If the client asked
for a specific user, the server can provide not only the state of
that user but also information about how to change the state of
the user, for example how to update the user’s name or how to
delete the user. It is easy to think about the way it’s done by
thinking about a server returning a response in HTML format
to a browser (which is the client). The HTML will include tags
with links (this is the hypermedia part) to another web page
where the user can be updated (for example a link to a ‘profile
settings’ page). To put all of this in perspective, most

web pages do implement hypermedia as the engine of
application state, but the most common web APIs do not
adhere to this constraint. To further understand this concept, I
highly recommend watching this 30 minutes YouTube video.

The result of the uniform interface is that requests from different
clients look the same, whether the client is a chrome browser, a
linux server, a python script, an android app or anything else.

Uniform Interface is the key differentiator between REST & Non-
REST APIs.

There are 4 elements of Uniform Interface constraint.
= |dentification of Resources (typically by an URL).
* Manipulation of Resources through representations.
» Self-descriptive messages for each request.
* HATEOS (Hypermedia As The Engine Of application State)

Promotes generality as all components interact in the same way.

https://www.youtube.com/watch?v=6UXc71O7htc

Client — server separation

The client and the server act independently, each on its own, and
the interaction between them is only in the form of requests,
initiated by the client only, and responses, which the server send
to the client only as a reaction to a request. The server just sits
there waiting for requests from the client to come. The server
doesn’t start sending away information about the state of some

resources on its own.

+ This constraint states that a REST application should have a Client
Server architecture.

* Advantage is Client & Server are separated
* They can evolve independently.

+ Clients need not know anything about business logic / data
access layer,

* Servers need not know anything about the frontend Ul

Stateless

Stateless means the server does not remember anything about the
user who uses the API. It doesn’t remember if the user of the API
already sent a GET request for the same resource in the past, it
doesn’t remember which resources the user of the API requested
before, and so on.Each individual request contains all the
information the server needs to perform the request and return a
response, regardless of other requests made by the same API user.

+ Stateless constraint states that the Server does not store any
session data.

« The communication between the Client & Server is stateless

+ |t means that all the information to understand a request is
contained within the request. '

* Improves Scalability

Cacheable

This means that the data the server sends contain information
about whether or not the data is cacheable. If the data is
cacheable, it might contain some sort of a version number. The
version number is what makes caching possible: since the client
knows which version of the data it already has (from a previous
response), the client can avoid requesting the same data again and
again. The client should also know if the current version of the
data is expired, in which case the client will know it should send
another request to the server to get the most updated data about

the state of a resource.

= (Cache constraint states responses should be cacheable, if
passible,

* It requires that every response should include whether a
response can be cacheable or not.

* For subsequent requests, the Client can retrieve from its cache,
need to send request to the Server.

* Reduces network latency.

Layered system

Between the client who requests a representation of a resource’s
state, and the server who sends the response back, there might be
a number of servers in the middle. These servers might provide a
security layer, a caching layer, a load-balancing layer, or other
functionality. Those layers should not affect the request or the
response. The client is agnostic as to how many layers, if any, there
are between the client and the actual server responding to the
request.

» Allows an architecture to be composed of hierarchical !éfers.
* Each layer doesn’t know anything beyond the immediate layer.

* Limits the amount of complexity that can be introduced at any
single layer.

* Disadvantage is latency

Code-on-demand

This constraint is optional — an API can be RESTful even without

providing code on demand.

The client can request code from the server, and then the response
from the server will contain some code, usually in the form of a

script, when the response is in HTML format. The client then can
execute that code.

	Uniform interface (key constrained)
	Client — server separation
	Stateless
	Cacheable
	Layered system
	/
	Code-on-demand

